Published in

Elsevier, European Journal of Medicinal Chemistry, (103), p. 252-268

DOI: 10.1016/j.ejmech.2015.08.049

Links

Tools

Export citation

Search in Google Scholar

Probing the structural requirements of non-electrophilic naphthalene-based Nrf2 activators

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Activation of the transcription factor Nrf2 has been posited to be a promising therapeutic strategy in a number of inflammatory and oxidative stress diseases due to its regulation of detoxifying enzymes. In this work, we have developed a comprehensive structure-activity relationship around a known, naphthalene-based non-electrophilic activator of Nrf2, and we report highly potent non-electrophilic activators of Nrf2. Computational docking analysis of a subset of the compound series demonstrates the importance of water molecule displacement for affinity, and the X-ray structure of di-amide 12e supports the computational analysis. One of the best compounds, acid 16b, has an IC50 of 61 nM in a fluorescence anisotropy assay and a Kd of 120 nM in a surface plasmon resonance assay. Additionally, we demonstrate that the ethyl ester of 16b is an efficacious inducer of Nrf2 target genes, exhibiting ex vivo efficacy similar to the well-known electrophilic activator, sulforaphane.