Published in

American Institute of Physics, Physics of Fluids, 3(24), p. 032109, 2012

DOI: 10.1063/1.3697796

Links

Tools

Export citation

Search in Google Scholar

Linear oscillations of constrained drops, bubbles, and plane liquid surfaces

Journal article published in 2012 by Andrea Prosperetti ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

The small-amplitude oscillations of constrained drops, bubbles, and plane liquid surfaces are studied theoretically. The constraints have the form of closed lines of zero thickness which prevent the motion of the liquid in the direction normal to the undisturbed free surface. It is shown that, by accounting explicitly for the singular nature of the curvature of the interface and the force exerted by the constraint, methods of analysis very close to the standard ones applicable to the unconstrained case can be followed. Weak viscous effects are accounted for by means of the dissipation function. Graphical and numerical results for the oscillations of constrained drops and bubbles are presented. Examples of two- and three-dimensional gravity-capillary waves are treated by the same method. A brief consideration of the Rayleigh-Taylor unstable configuration shows that the nature of the instability is not affected, although its growth rate is decreased.