Published in

Optica, Optics Express, 19(23), p. 24195, 2015

DOI: 10.1364/oe.23.024195

Links

Tools

Export citation

Search in Google Scholar

Novel space-time trellis codes for free-space optical communications using transmit laser selection

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

In this paper, the deployment of novel space-time trellis codes (STTCs) with transmit laser selection (TLS) for free-space optical (FSO) communication systems using intensity modulation and direct detection (IM/DD) over atmospheric turbulence and misalignment fading channels is presented. Combining TLS and STTC with rate 1 bit/(s · Hz), a new code design criterion based on the use of the largest order statistics is here proposed for multiple-input/single-output (MISO) FSO systems in order to improve the diversity order gain by properly chosing the transmit lasers out of the available L lasers. Based on a pairwise error probability (PEP) analysis, closed-form asymptotic bit error-rate (BER) expressions in the range from low to high signal-to-noise ratio (SNR) are derived when the irradiance of the transmitted optical beam is susceptible to moderate-to-strong turbulence conditions, following a gamma-gamma (GG) distribution, and pointing error effects, following a misalignment fading model where the effect of beam width, detector size and jitter variance is considered. Obtained results show diversity orders of 2L and 3L when simple two-state and four-state STTCs are considered, respectively. Simulation results are further demonstrated to confirm the analytical results.