Published in

American Scientific Publishers, Journal of Nanoscience and Nanotechnology, 7(12), p. 5724-5727, 2012

DOI: 10.1166/jnn.2012.6414

Links

Tools

Export citation

Search in Google Scholar

Enhanced Performance of SubPC/C<sub>60</sub> Solar Cells by Annealing and Modifying Surface Morphology

Journal article published in 2012 by Jun Young Kim, Jeonghun Kwak ORCID, Seunguk Noh, Changhee Lee ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The performance effect of organic solar cells with subphthalocyanine (SubPC)/fullerene (C60) bilayer was investigated with thermal treatment while changing the vacuum deposition rate of SubPC. The thermal annealing at 100 degrees C increases the optical absorption intensity of SubPC film at the spectral range of 550-630 nm. The X-ray diffraction (XRD) patterns indicates that the thermally annealed film formed the much-ordered morphology, as compared to the non-annealed film. Consequently, thermally treated solar cell exhibited almost 10% higher power conversion efficiency (PCE) compared to the non-annealed device. The fill factor (FF) and PCE of the devices were increased as the deposition rate of SubPC was increased up to 5 A/s and then saturated at higher deposition rates (> 5 A/s). The surface roughness of SubPC films, measured with an atomic force microscope, increased from 1.1 to 5 nm as the deposition rate increased from 1 to 7 A/s. These results imply that rough surface increases the interfacial area between SubPC and C60 and thereby improves the separation of photogenerated electron and hole pairs at the SubPC/C60 interface.