Published in

Elsevier, Journal of Power Sources, 9(196), p. 4332-4336

DOI: 10.1016/j.jpowsour.2010.08.066

Links

Tools

Export citation

Search in Google Scholar

Optimization of La0.6Ca0.4Fe0.8Ni0.2O3–Ce0.8Sm0.2O2 composite cathodes for intermediate-temperature solid oxide fuel cells

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Sample of nominal composition La0.6Ca0.4Fe0.8Ni0.2O3 (LCFN) was prepared by liquid mix method. The structure of the polycrystalline powder was analyzed with X-ray powder diffraction data. This compound shows orthorhombic perovskite structure with a space group Pnma. In order to improve the electrochemical performance, Sm-doped ceria (SDC) powder was added to prepare the LCFN–SDC composite cathodes. Electrochemical characteristics of the composites have been investigated for possible application as cathode material for an intermediate-temperature-operating solid oxide fuel cell (IT-SOFC). The polarization resistance was studied using Sm-doped ceria (SDC). Electrochemical impedance spectroscopy measurements of LCFN–SDC/SDC/LCFN–SDC test cell were carried out. These electrochemical experiments were performed at equilibrium from 850 °C to room temperature, under both zero dc current intensity and air. The best value of area-specific resistance (ASR) was for LCFN cathode doped with 10% of SDC (LCFN–SDC9010), 0.13 Ω cm2 at 850 °C. The dc four-probe measurement exhibits a total electrical conductivity over 100 S cm−1 at T ≥ 600 °C for LCFN–SDC9010 composite cathode.