Published in

Oxford University Press, Biology of Reproduction, 1(69), p. 37-47, 2003

DOI: 10.1095/biolreprod.102.012609

Links

Tools

Export citation

Search in Google Scholar

Gene Expression Profiles in Different Stages of Mouse Spermatogenic Cells During Spermatogenesis1

Journal article published in 2003 by Zuoren Yu, Rui Guo, Yehua Ge, Jing Ma, Jikui Guan ORCID, Sai Li, Xiaodong Sun, Shepu Xue, Daishu Han
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

During spermatogenesis, diploid stem cells differentiate, undergo meiosis and spermiogenesis, and transform into haploid spermatozoa. Various factors have been demonstrated to regulate this marvelous process of differentiation, but the expression of only a few genes specifically involved in spermatogenesis has been studied. In the present study, different types of spermatogenic cells were isolated from Balb/c mice testes of different ages using the velocity sedimentation method, and we determined the expression profiles of 1176 known mouse genes in six different types of mouse spermatogenic cells (primitive type A spermatogonia, type B spermatogonia, preleptotene spermatocytes, pachytene spermatocytes, round spermatids, and elongating spermatids) using Atlas cDNA arrays. Of the 1176 genes on the Atlas Mouse 1.2 cDNA Expression Arrays, we detected 181 genes in primitive type A spermatogonia, 256 in type B spermatogonia, 221 in preleptotene spermatocytes, 160 in pachytene spermatocytes, 141 in round spermatids, and 126 in elongating spermatids. A number of genes were detected as differential expression (up-regulation or down-regulation). Fourteen of the differentially expressed genes have been further confirmed by reverse transcription-polymerase chain reaction for their expression characterizations in different types of spermatogenic cells. These results provide more information for further studies into spermatogenesis-related genes and may lead to the identification of genes with potential relevance to spermatogenesis.