Published in

Springer, MRS Bulletin, 5(39), p. 416-422, 2014

DOI: 10.1557/mrs.2014.85

Links

Tools

Export citation

Search in Google Scholar

Layered oxides as positive electrode materials for Na-ion batteries

Journal article published in 2014 by Kei Kubota ORCID, Naoaki Yabuuchi, Hiroaki Yoshida, Mouad Dahbi, Shinichi Komaba
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Considering the need for designing better batteries to meet the rapidly growing demand for large-scale energy storage applications, an aspect of primary importance for battery materials is elemental abundance. To achieve sustainable energy development, we must reconsider the feasibility of a sustainable lithium supply, which is essential for lithium(-ion) batteries. Lithium is widely distributed in the Earth, but is not regarded as an abundant element. Therefore, widespread use of large-scale lithium batteries would be inevitably restricted. Sodium(-ion) batteries are thus promising candidates for large-scale applications because sodium is the most advantageous next to lithium considering its atomic weight, standard potential, and natural abundance. Rechargeable sodium-ion batteries consist of two different sodium insertion materials similar to Li-ion batteries. Sodium insertion materials, especially layered oxides, have been studied since the early 1980s, but not extensively for energy storage devices due to the expanded interest in lithium insertion materials in the 1990s. In recent years, materials researchers have again been extensively exploring new sodium insertion materials to enhance battery performance. This article reviews recent advancements and trends in layered sodium transition metal oxides as positive electrode materials for Na-ion batteries.