Published in

American Institute of Physics, Review of Scientific Instruments, 1(85), p. 013302

DOI: 10.1063/1.4859496

Links

Tools

Export citation

Search in Google Scholar

Development and first experimental tests of Faraday cup array

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

A new type of Faraday cup, capable of detecting high energy charged particles produced in a high intensity laser-matter interaction environment, has recently been developed and demonstrated as a real-time detector based on the time-of-flight technique. An array of these Faraday cups was designed and constructed to cover different observation angles with respect to the target normal direction. Thus, it allows reconstruction of the spatial distribution of ion current density in the subcritical plasma region and the ability to visualise its time evolution through time-of-flight measurements, which cannot be achieved with standard laser optical interferometry. This is a unique method for two-dimensional visualisation of ion currents from laser-generated plasmas. A technical description of the new type of Faraday cup is introduced along with an ad hoc data analysis procedure. Experimental results obtained during campaigns at the Petawatt High-Energy Laser for Heavy Ion Experiments (GSI, Darmstadt) and at the Prague Asterix Laser System (AS CR) are presented. Advantages and limitations of the used diagnostic system are discussed.