Published in

Wiley, Advanced Energy Materials, 7(3), p. 903-908, 2013

DOI: 10.1002/aenm.201200886

Links

Tools

Export citation

Search in Google Scholar

The Influence of MoOxAnode Stoicheometry on the Performance of Bulk Heterojunction Polymer Solar Cells

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Bulk heterojunction solar cells containing molybdenum oxide hole extracting anode contacts have been fabricated with varying stoicheometry using radio frequency reactive sputtering from a Molybdenum metal target. A blend of the newly synthesised conjugated polymer poly[9-(heptadecan-9-yl)-9H-carbazole-2,7-diyl-alt-(5,6-bis(octyloxy)-4,7-di(thiophen-2-yl)benzo[c][1,2,5]thiadiazole)-5,5-diyl] (PCDTBT-8) and fullerene [6,6]-Phenyl-C71-butyric acid methyl ester (PC70BM) was used as the photoactive layer and device results show that anodes with greater than 98% Molybdenum (VI) oxide result in peak power conversion efficiencies of 3.7%.The presence of up to 28% of Mo (V) results in no significant reduction in efficiency, however the presence of metallic Mo (IV) and lower oxidation states lead to severe reductions in device performance due to a combination of a large hole extraction energy barrier of approximately 0.9eV and reduced device stability.