American Chemical Society, Journal of Physical Chemistry C, 14(116), p. 7701-7711, 2012
DOI: 10.1021/jp3012393
Full text: Download
The aim of this work was to better understand the electrochemical processes occurring during the cycling of a lithium-ion half-cell containing ordered mesoporous hard carbon using time-resolved in situ small-angle neutron scattering (SANS). Utilizing electrolytes containing mixtures of deuterated (2H) and non-deuterated (1H) carbonates, we have addressed the challenging task of monitoring the formation and evolution of the solid-electrolyte interphase (SEI) layer. An evolution occurs in the SEI layer during discharge from a composition dominated by a higher scattering length density (SLD) lithium salt, to a lower SLD lithium salt for the ethylene carbonate/dimethyl carbonate (EC/DMC) mixture employed. By comparing half-cells containing different solvent deuteration levels, we show that it is possible to observe both SEI formation and lithium intercalation occurring concurrently at the low voltage region in which lithium intercalates into the hard carbon. These results demonstrate that SANS can be employed to monitor complicated electrochemical processes occurring in rechargeable batteries, in a manner that simultaneously provides information on the composition and microstructure of the electrode.