Dissemin is shutting down on January 1st, 2025

Published in

Elsevier, Ultramicroscopy, (122), p. 12-18, 2012

DOI: 10.1016/j.ultramic.2012.07.020

Links

Tools

Export citation

Search in Google Scholar

EEL spectroscopic tomography: Towards a new dimension in nanomaterials analysis

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Electron tomography is a widely spread technique for recovering the three dimensional (3D) shape of nanostructured materials. Using a spectroscopic signal to achieve a reconstruction adds a fourth chemical dimension to the 3D structure. Up to date, energy filtering of the images in the transmission electron microscope (EFTEM) is the usual spectroscopic method even if most of the information in the spectrum is lost. Unlike EFTEM tomography, the use of electron energy-loss spectroscopy (EELS) spectrum images (SI) for tomographic reconstruction retains all chemical information, and the possibilities of this new approach still remain to be fully exploited. In this article we prove the feasibility of EEL spectroscopic tomography at low voltages (80kV) and short acquisition times from data acquired using an aberration corrected instrument and data treatment by Multivariate Analysis (MVA), applied to Fe(x)Co((3-x))O(4)@Co(3)O(4) mesoporous materials. This approach provides a new scope into materials; the recovery of full EELS signal in 3D.