Published in

American Society for Microbiology, Journal of Virology, 5(75), p. 2235-2245, 2001

DOI: 10.1128/jvi.75.5.2235-2245.2001

Links

Tools

Export citation

Search in Google Scholar

Antibody-Mediated Neutralization of Primary Human Immunodeficiency Virus Type 1 Isolates: Investigation of the Mechanism of Inhibition

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

ABSTRACT Human immunodeficiency virus type 1 (HIV-1) neutralization occurs when specific antibodies, mainly those directed against the envelope glycoproteins, inhibit infection, most frequently by preventing the entry of the virus into target cells. However, the precise mechanisms of neutralization remain unclear. Previous studies, mostly with cell lines, have produced conflicting results involving either the inhibition of virus attachment or interference with postbinding events. In this study, we investigated the mechanisms of neutralization by immune sera and compared the inhibition of peripheral blood mononuclear cells (PBMC) infection by HIV-1 primary isolates (PI) with the inhibition of T-cell line infection by T-cell line-adapted (TCLA) strains. We followed the kinetics of neutralization to determine at which step of the viral cycle the antibodies act. We found that neutralization of the TCLA strain HIV-1 MN /MT-4 required an interaction between antibodies and cell-free virions before the addition of MT-4 cells, whereas PI were neutralized even after adsorption onto PBMC. In addition, the dose-dependent inhibition of HIV-1 MN binding to MT-4 cells was strongly correlated with serum-induced neutralization. In contrast, neutralizing sera did not reduce the adhesion of PI to PBMC. Postbinding inhibition was also detected for HIV-1 MN produced by and infecting PBMC, demonstrating that the mechanism of neutralization depends on the target cell used in the assay. Finally, we considered whether the different mechanisms of neutralization may reflect the recognition of qualitatively different epitopes on the surface of PI and HIV-1 MN or whether they reflect differences in virus attachment to PBMC and MT-4 cells.