Published in

American Chemical Society, Journal of Proteome Research, 2(5), p. 287-298, 2006

DOI: 10.1021/pr0503230

Links

Tools

Export citation

Search in Google Scholar

Determination and Comparison of the Baseline Proteomes of the Versatile MicrobeRhodopseudomonaspalustrisunder Its Major Metabolic States

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Rhodopseudomonas palustris is a purple nonsulfur anoxygenic phototrophic bacterium that is ubiquitous in soil and water. R. palustris is metabolically versatile with respect to energy generation and carbon and nitrogen metabolism. We have characterized and compared the baseline proteome of a R. palustris wild-type strain grown under six metabolic conditions. The methodology for proteome analysis involved protein fractionation by centrifugation, subsequent digestion with trypsin, and analysis of peptides by liquid chromatography coupled with tandem mass spectrometry. Using these methods, we identified 1664 proteins out of 4836 predicted proteins with conservative filtering constraints. A total of 107 novel hypothetical proteins and 218 conserved hypothetical proteins were detected. Qualitative analyses revealed over 311 proteins exhibiting marked differences between conditions, many of these being hypothetical or conserved hypothetical proteins showing strong correlations with different metabolic modes. For example, five proteins encoded by genes from a novel operon appeared only after anaerobic growth with no evidence of these proteins in extracts of aerobically grown cells. Proteins known to be associated with specialized growth states such as nitrogen fixation, photoautotrophic, or growth on benzoate, were observed to be up-regulated under those states.