Dissemin is shutting down on January 1st, 2025

Published in

Elsevier, BBA - Biomembranes, 3(1758), p. 336-346, 2006

DOI: 10.1016/j.bbamem.2006.01.014

Links

Tools

Export citation

Search in Google Scholar

Cellular uptake of S413-PV peptide occurs upon conformational changes induced by peptide–membrane interactions

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

In face of accumulated reports demonstrating that uptake of some cell-penetrating peptides occurs through previously described endocytic pathways, or is a consequence of cell fixation artifacts, we conducted a systematic analysis on the mechanism responsible for the cellular uptake of the S4(13)-PV karyophilic cell-penetrating peptide. The results reviewed here show that the S4(13)-PV peptide is able to very efficiently accumulate inside live cells in a rapid, non-toxic and dose-dependent manner, through a mechanism distinct from endocytosis. Comparative analysis of peptide uptake by mutant cells lacking heparan sulfate proteoglycans demonstrates that, although not mandatory, their presence at cell surface facilitates the cellular uptake of the S4(13)-PV peptide. Furthermore, we demonstrate that upon interaction with lipid vesicles, the S4(13)-PV peptide undergoes significant conformational changes that are consistent with the formation of helical structures. Such conformational changes occur concomitantly with a penetration of the peptide into the lipid bilayer, strongly suggesting that the resulting helical structures are crucial for the non-endocytic cellular uptake of the S4(13)-PV peptide. Overall, our data support that, rather than endocytosis, the cellular uptake of the S4(13)-PV cell-penetrating peptide is a consequence of its direct translocation through cell membranes following conformational changes induced by peptide-membrane interactions.