Dissemin is shutting down on January 1st, 2025

Published in

American Astronomical Society, Astrophysical Journal, 1(803), p. 8, 2015

DOI: 10.1088/0004-637x/803/1/8

Links

Tools

Export citation

Search in Google Scholar

Refined Properties of the HD 130322 Planetary System

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Exoplanetary systems closest to the Sun, with the brightest host stars, provide the most favorable opportunities for characterization studies of the host star and their planet(s). The Transit Ephemeris Refinement and Monitoring Survey uses both new radial velocity measurements and photometry in order to greatly improve planetary orbit uncertainties and the fundamental properties of the star, in this case HD 130322. The only companion, HD 130322b, orbits in a relatively circular orbit, e = 0.029 every ~10.7 days. Radial velocity measurements from multiple sources, including 12 unpublished from the Keck I telescope, over the course of ~14 years have reduced the uncertainty in the transit midpoint to ~2 hours. The transit probability for the b-companion is 4.7%, where M_p sin i = 1.15 M_J and a = 0.0925 AU. In this paper, we compile photometric data from the T11 0.8m Automated Photoelectric Telescope at Fairborn Observatory taken over ~14 years, including the constrained transit window, which results in a dispositive null result for both full transit exclusion of HD 130322b to a depth of 0.017 mag and grazing transit exclusion to a depth of ~0.001 mag. Our analysis of the starspot activity via the photometric data reveals a highly accurate stellar rotation period: 26.53 +/-0.70 days. In addition, the brightness of the host with respect to the comparison stars is anti-correlated with the Ca II H and K indices, typical for a young solar-type star. ; Comment: 9 pages, 4 figures, 4 tables, accepted to ApJ