Published in

Wiley, Journal of Mass Spectrometry, 8(40), p. 1104-1108, 2005

DOI: 10.1002/jms.888

Links

Tools

Export citation

Search in Google Scholar

Optimized sample preparation for isotopic analyses of CO2 in air: Systematic study of precision and accuracy dependence on driving variables during CO2 purification process

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

A systematic analysis of efficiency, reproducibility and accuracy of cryogenic purification of CO(2) from air samples for isotopic analyses is presented. The technical characteristics of the cryogenic line are given in detail. To study the cryogenic process, three different operating parameters are considered: flow rate of the gas entering the line, pressure of the gas in the line, and CO(2)-trap shape. Experimental results demonstrate that efficiency, reproducibility and accuracy strongly depend on the CO(2)trap shape. Moreover, a dependence of reproducibility and accuracy on the flow rate of the gas is found, but not on its pressure. High precision (< or =0.02 per thousand for delta(13)C and < or =0.05 per thousand for delta(18)O) and good accuracy (<0.09 per thousand for delta(13)C and <0.14 per thousand for delta(18)O) is achieved after applying the N(2)O correction.