Published in

Oxford University Press (OUP), FEMS Immunology and Medical Microbiology, 1(59), p. 60-70, 2010

DOI: 10.1111/j.1574-695x.2010.00662.x

Links

Tools

Export citation

Search in Google Scholar

Differential effects ofLactobacillus acidophilusandLactobacillus plantarumstrains on cytokine induction in human peripheral blood mononuclear cells

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Lactic acid bacterial strains have received interest for their immunomodulating activities and potential use in probiotic products. A wide variety of strain-dependent properties have been reported, but comparative studies at the species level are scarce. The objective of this study was to assess the immunomodulatory effect of Lactobacillus species on the cytokine profiles and proliferative response of human peripheral blood mononuclear cells (hPBMC), and in particular, on the comparison between the species Lactobacillus acidophilus and Lactobacillus plantarum. hPBMC from healthy donors were stimulated in the presence or absence of the lactic acid bacteria, and cytokine production, surface marker staining, proliferation and cell death were determined after 1 and 4 days of culture. All Lactobacillus strains tested were capable of inducing the production of interleukin (IL)-1beta, IL-10, interferon-gamma (IFN-gamma) and tumor necrosis factor-alpha (TNF-alpha). The bacterial strains did not differentially influence the amount of proliferating, viable, apoptotic and necrotic cells. Generally, L. plantarum showed a significantly higher induction capacity of IFN-gamma, IL-12 and TNF-alpha compared with L. acidophilus. We conclude that the variation in immunomodulatory effects between species is even larger than the variation between the strains of the same species. In addition, we demonstrate that L. plantarum strains are most potent in skewing the T-cell differentiation toward a putative Th1 response.