Published in

American Geophysical Union, Journal of Geophysical Research, C3(113), 2008

DOI: 10.1029/2007jc004269

Links

Tools

Export citation

Search in Google Scholar

Trends in Antarctic annual sea ice retreat and advance and their relation to El Niño–Southern Oscillation and Southern Annular Mode variability

Journal article published in 2008 by S. E. Stammerjohn ORCID, D. G. Martinson, R. C. Smith, X. Yuan, D. Rind
This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

1] Previous studies have shown strong contrasting trends in annual sea ice duration and in monthly sea ice concentration in two regions of the Southern Ocean: decreases in the western Antarctic Peninsula/southern Bellingshausen Sea (wAP/sBS) region and increases in the western Ross Sea (wRS) region. To better understand the evolution of these regional sea ice trends, we utilize the full temporal (quasi-daily) resolution of satellite-derived sea ice data to track spatially the annual ice edge advance and retreat from 1979 to 2004. These newly analyzed data reveal that sea ice is retreating 31 ± 10 days earlier and advancing 54 ± 9 days later in the wAP/sBS region (i.e., total change over 1979–2004), whereas in the wRS region, sea ice is retreating 29 ± 6 days later and advancing 31 ± 6 days earlier. Changes in the wAP/sBS and wRS regions, particularly as observed during sea ice advance, occurred in association with decadal changes in the mean state of the Southern Annular Mode (SAM; negative in the 1980s and positive in the 1990s) and the high-latitude response to El Niño–Southern Oscillation (ENSO). In general, the high-latitude ice-atmosphere response to ENSO was strongest when -SAM was coincident with El Niño and when +SAM was coincident with La Niña, particularly in the wAP/sBS region. In total, there were 7 of 11 -SAMs between 1980 and 1990 and the 7 of 10 +SAMs between 1991 and 2000 that were associated with consistent decadal sea ice changes in the wAP/sBS and wRS regions, respectively. Elsewhere, ENSO/SAM-related sea ice changes were not as consistent over time (e.g., western Weddell, Amundsen, and eastern Ross Sea region), or variability in general was high (e.g., central/ eastern Weddell and along East Antarctica).