Published in

Elsevier, Neurochemistry International, 1(39), p. 11-18, 2001

DOI: 10.1016/s0197-0186(01)00005-5

Links

Tools

Export citation

Search in Google Scholar

Characterization of ceramide-induced apoptotic death in cerebellar granule cells in culture

Journal article published in 2001 by Barbara Monti ORCID, Paolo Zanghellini, Antonio Contestabile
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Sphingomyelin signalling system has been involved in several examples of cell death through apoptosis. We have characterised the effect of exposure to the cell permeable ceramide analogue, C2-ceramide, on cultures of differentiated cerebellar granule cells. C2-ceramide was toxic to granule cells in a dose- and time-dependent way at concentrations higher than 10 μM. Ceramide exposure was accompanied by characteristic alterations of cell morphology, namely swollen cell bodies and punctuate appearance and arcuate direction of processes. The final outcome of ceramide exposure was a form of cell death largely apoptotic in nature. Hoechst stain, followed by counts of nuclei with normal appearance and size or with condensed chromatin and reduced size, revealed a large increase of the proportion of shrunken nuclei in treated cultures. In situ visualisation of fragmented DNA through the TUNEL technique, additionally marked cells undergoing apoptosis as a consequence of ceramide treatment. Accordingly, the DNA extracted from cultures exposed to C2-ceramide and subjected to agarose gel electrophoresis showed the peculiar ladder of fragmented low molecular weight DNA. Treatments with inhibitors of two caspases or of nitric oxide synthase were unable to rescue neurons exposed to ceramide, thus suggesting a neurotoxic action not primarily dependent on activation of death proteases or on nitric oxide production.