Links

Tools

Export citation

Search in Google Scholar

Robust Learning of Chaotic Attractors.

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Question mark in circle
Preprint: policy unknown
Question mark in circle
Postprint: policy unknown
Question mark in circle
Published version: policy unknown

Abstract

A fundamental problem with the modeling of chaotic time series data is that minimizing short-term prediction errors does not guarantee a match between the reconstructed attractors of model and experiments. We introduce a modeling paradigm that simultaneously learns to short-term predict and to locate the outlines of the attractor by a new way of nonlinear principal component analysis. Closed-loop predictions are constrained to stay within these outlines, to prevent divergence from the attractor. Learning is exceptionally fast: parameter estimation for the 1000 sample laser data from the 1991 Santa Fe time series competition took less than a minute on a 166 MHz Pentium PC.