Published in

American Physical Society, Physical review E: Statistical, nonlinear, and soft matter physics, 4(80), 2009

DOI: 10.1103/physreve.80.041902

Links

Tools

Export citation

Search in Google Scholar

Morphogen profiles can be optimized to buffer against noise

Journal article published in 2009 by Timothy E. Saunders, Martin Howard ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Morphogen profiles play a vital role in biology by specifying position in embryonic development. However, the factors that influence the shape of a morphogen profile remain poorly understood. Since morphogens should provide precise positional information, one significant factor is the robustness of the profile to noise. We compare three experimentally relevant classes of morphogen profiles (linear, exponential, and algebraic) to see which is most precise when subject to both external embryo-to-embryo fluctuations and internal fluctuations due to intrinsically random processes such as diffusion. We find that both the kinetic parameters and the overall gradient shape (e.g., exponential versus algebraic) can be optimized to generate maximally precise positional information.