Published in

Oxford University Press, Clinical Chemistry, 3(58), p. 543-548, 2012

DOI: 10.1373/clinchem.2011.176545

Elsevier, Year Book of Pathology and Laboratory Medicine, (2013), p. 329-330

DOI: 10.1016/j.ypat.2012.07.043

Links

Tools

Export citation

Search in Google Scholar

Accuracy of 6 Routine 25-Hydroxyvitamin D Assays: Influence of Vitamin D Binding Protein Concentration

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Abstract BACKGROUND Recent recognition of its broad pathophysiological importance has triggered an increased interest in 25-hydroxyvitamin D [25(OH)D]. By consequence, throughput in 25(OH)D testing has become an issue for clinical laboratories, and several automated assays for measurement of 25(OH)D are now available. The aim of this study was to test the accuracy and robustness of these assays by comparing their results to those of an isotope dilution/online solid-phase extraction liquid chromatography/tandem mass spectrometry (ID-XLC-MS/MS) method. We put specific focus on the influence of vitamin D–binding protein (DBP) by using samples with various concentrations of DBP. METHODS We used 5 automated assays (Architect, Centaur, iSYS, Liaison, and Elecsys), 1 RIA (Diasorin) preceded by extraction, and an ID-XLC-MS/MS method to measure 25(OH)D concentrations in plasma samples of 51 healthy individuals, 52 pregnant women, 50 hemodialysis patients, and 50 intensive care patients. Using ELISA, we also measured DBP concentrations in these samples. RESULTS Most of the examined 25(OH)D assays showed significant deviations in 25(OH)D concentrations from those of the ID-XLC-MS/MS method. As expected, DBP concentrations were higher in samples of pregnant women and lower in samples of IC patients compared to healthy controls. In 4 of the 5 fully automated 25(OH)D assays, we observed an inverse relationship between DBP concentrations and deviations from the ID-XLC-MS/MS results. CONCLUSIONS 25(OH)D measurements performed with most immunoassays suffer from inaccuracies that are DBP concentration dependent. Therefore, when interpreting results of 25(OH)D measurements, careful consideration of the measurement method is necessary.