Published in

Metamaterials IV

DOI: 10.1117/12.826859

Links

Tools

Export citation

Search in Google Scholar

Complex Fourier factorization method applied in modeling optical metamaterials based on 2D periodic nanostructures

Journal article published in 2009 by Roman Antos, Martin Veis, Stefan Visnovsky ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Red circle
Preprint: archiving forbidden
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

The rigorous coupled wave theory dealing with optics of discontinuous two-dimensional (2D) periodic structures is reformulated by using the complex Fourier factorization method, which is a generalized implementation of the fast Fourier factorization rules. The modified approach yields considerably improved convergence properties, as shown on three samples of 2D gratingsmade as periodically arranged cylindrical holes on the top of quartz, silicon, and gold substrates. The method can also be applied to the calculation of 2D photonic band-gap structures or nonperiodic cylindrical devices, and can be generalized to elements with arbitrary cross-sections.