Published in

Elsevier, Carbon, 11(46), p. 1497-1505

DOI: 10.1016/j.carbon.2008.06.048

Links

Tools

Export citation

Search in Google Scholar

Effect of CNT Decoration With Silver Nanoparticles on Electrical Conductivity of CNT-Polymer Composites

Journal article published in 2008 by Peng Cheng, Peng Cheng Ma, Ben Zhong Tang, Jang-Kyo Kim ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

A simple approach to decorate carbon nanotube (CNT) with silver nanoparticles (Ag-NPs) was developed to enhance the electrical conductivity of CNT. CNTs were functionalized using ball milling in the presence of ammonium bicarbonate, followed by reduction of silver ions in N, N-dimethylformamide, producing silver decorated CNTs (Ag@CNTs). The Ag@CNTs were employed as conducting filler in epoxy resin to fabricate electrically conducting polymer composites. The electrical, thermal and mechanical properties of the composites were measured and compared with those containing pristine and functionalized CNTs. It was found that when pH was about six, highly dispersed Ag-NPs can be decorated on functionalized CNTs. The electrical conductivity of composites containing 0.10 wt% of Ag@CNTs was more than four orders of magnitude higher than those containing same content of pristine and functionalized CNTs, confirming the advantage of the Ag@CNTs as effective conducting filler. The ameliorating effect of improved electrical conductivity was not at the expense of thermal or mechanical properties.