Dissemin is shutting down on January 1st, 2025

Published in

Springer Nature [academic journals on nature.com], Oncogene, 36(32), p. 4222-4230, 2012

DOI: 10.1038/onc.2012.450

Links

Tools

Export citation

Search in Google Scholar

HTLV-1 bZIP factor dysregulates the Wnt pathways to support proliferation and migration of adult T-cell leukemia cells

Journal article published in 2012 by G. Ma, J. Yasunaga, J. Fan, S. Yanagawa, M. Matsuoka ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Human T-cell leukemia virus type 1 (HTLV-1) is the causative agent of adult T-cell leukemia (ATL). HTLV-1 bZIP factor (HBZ), the viral gene transcribed from the antisense strand, is consistently expressed in ATL cells and promotes their proliferation. In this study, we found that a Wnt pathway-related protein, disheveled-associating protein with a high frequency of leucine residues (DAPLE), interacts with both HTLV-1 Tax and HBZ. In the presence of DAPLE, Tax activated canonical Wnt signaling. Conversely, HBZ markedly suppressed canonical Wnt activation induced by either Tax/DAPLE or β-catenin. As a mechanism of HBZ-mediated Wnt suppression, we found that HBZ targets lymphoid enhancer-binding factor 1, one of the key transcription factors of the pathway, and impairs its DNA-binding ability. We also observed that the canonical Wnt pathway was not activated in HTLV-1-infected cells, whereas the representative of noncanonical Wnt ligand, Wnt5a, which antagonizes canonical Wnt signaling, was overexpressed. HBZ was able to induce Wnt5a transcription by enhancing its promoter activity through the TGF-β pathway. Importantly, knocking down of Wnt5a in ATL cells repressed cellular proliferation and migration. Our results implicate novel roles of HBZ in ATL leukemogenesis through dysregulation of both the canonical and noncanonical Wnt pathways.Oncogene advance online publication, 8 October 2012; doi:10.1038/onc.2012.450.