Dissemin is shutting down on January 1st, 2025

Published in

IOP Publishing, Nuclear Fusion, 3(41), p. 295-300

DOI: 10.1088/0029-5515/41/3/306

Links

Tools

Export citation

Search in Google Scholar

Dependence of edge stability on plasma shape and local pressure gradients in the DIII-D and JT-60U tokamaks

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The dependence of edge stability on plasma shape and local pressure gradients P' in the DIII-D and JT-60U tokamaks is studied. The stronger plasma shaping in DIII-D allows the edge region of DIII-D discharges with type I (giant) ELMs to have access to the second region of stability for ideal ballooning modes and a larger edge pedestal pressure gradient P' than JT-60U type I ELM discharges. These JT-60U discharges are near the ballooning mode first regime stability limit. The DIII-D results support an ideal stability based working model of type I ELMs as low to intermediate toroidal mode number, n, MHD modes. The results from a stability analysis of JT-60U type I ELM discharges indicate that the predictions of this model are also consistent with JT-60U edge stability observations.