Published in

American Chemical Society, Journal of Proteome Research, 8(13), p. 3671-3678, 2014

DOI: 10.1021/pr500213a

Links

Tools

Export citation

Search in Google Scholar

Stable Isotope-Labeled Collagen: A Novel and Versatile Tool for Quantitative Collagen Analyses Using Mass Spectrometry

Journal article published in 2014 by Yuki Taga ORCID, Masashi Kusubata, Kiyoko Ogawa-Goto, Shunji Hattori
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Collagens are the most abundant proteins in animals and are involved in many physiological/pathological events. Although various methods have been used to quantify collagen and its post-translational modifications (PTMs) over the years, it is still difficult to accurately quantify type-specific collagen and minor collagen PTMs. We report a novel quantitative method targeting collagen using stable isotope-labeled (SI) collagen, which was labeled with isotopically heavy lysine, arginine, and proline in fibroblasts culture. We prepared highly labeled and purified SI-collagen for use as an internal standard in mass spectrometric analysis, particularly for a new approach using amino acid hydrolysis. Our method enabled accurate collagen analyses, including quantification of (1) type-specific collagen (types I and III in this paper), (2) total collagen, and (3) collagen PTMs by LC-MS with high sensitivity. SI-collagen is also applicable to other diverse analyses of collagen and can be a powerful tool for various studies, such as detailed investigation of collagen-related disorders.