Published in

Wiley, Journal of Industrial Ecology, 3(9), p. 143-167, 2005

DOI: 10.1162/1088198054821627

Links

Tools

Export citation

Search in Google Scholar

Rethinking Environmental Performance from a Public Health Perspective: A Comparative Industry Analysis

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

To date the most common measures of environmental performance used to compare industries, and by extension firms or facilities, have been quantity of pollution emitted or hazardous waste generated. Discharge information, however, does not necessarily capture potential health effects. We propose an alternative environmental performance measure that includes the public health risks of toxic air emissions extended to industry supply chains using economic input-output life-cycle assessment. Cancer risk to the U.S. population was determined by applying a damage function to the Toxic Release Inventory (TRI) as modeled by CalTOX, a multimedia multipathway fate and exposure model. Risks were then translated into social costs using cancer willingness to pay. For a baseline emissions year of 1998, 260 excess cancer cases were calculated for 116 TRI chemicals, dominated by ingestion risk from polycyclic aromatic compounds and dioxins emitted by the primary aluminum and cement industries, respectively. The direct emissions of a small number of industry sectors account for most of the U.S. population cancer risk. For the majority of industry sectors, however, cancer risk per $1 million output is associated with supply chain upstream emissions. Ranking industries by total (direct + upstream) supply chain risk per economic output leads to different conclusions about the relative hazards associated with these industries than a conventional ranking based on emissions per economic output.