Published in

American Chemical Society, Journal of Physical Chemistry C, 48(116), p. 25434-25443, 2012

DOI: 10.1021/jp309518a

Links

Tools

Export citation

Search in Google Scholar

Straightforward Synthesis of Gold Nanoparticles Supported on Commercial Silica-Polyethyleneimine Beads

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Stable silica-supported gold nanoparticles (AuNPs) suitable for catalysis applications were conveniently obtained in a straightforward, one-step synthesis by simply adding an aqueous solution of HAuCl4 to commercial polyethyleneiminefunctionalized silica beads (SiO2-PEI) as the only reactant without any external reducing agent and/or conventional stabilizing moieties. Six different types of AuNPs/(SiO2-PEI) beads termed Aux−yh, where x is the initial HAuCl4 concentration (1, 5, or 10 mM) and y is the reaction time (1 or 24 h), were prepared and characterized by UV−vis diffuse reflectance spectroscopy, X-ray fluorescence, FE-SEM microscopy, and X-ray absorption spectroscopy. The SEM micrographs of Aux−yh samples showed that the particle size distribution decreases with the increase of the starting gold concentration, i.e., 70−100 nm for Au1−xh, 40−70 nm for Au5−xh, and Au10−xh, whereas on passing from 1 to 24 h the aggregation phenomena overcome the nucleation ones, promoting the formation of bigger aggregates at the expense of small AuNPs. The XAS analysis as a combination of XANES and EXAFS studies provided detailed structural information regarding the coordination geometry and oxidation state of the gold atoms present on the beads. Moreover, the catalytic activity of the modified silica beads in the reduction of 4-nitrophenol to 4-aminophenol by NaBH4 was investigated and in one case the XAS analysis was repeated after recovery of the catalyst, demonstrating further reduction of the Au site to Au(0).