Dissemin is shutting down on January 1st, 2025

Published in

Elsevier, Journal of Sea Research, 4(41), p. 255-268

DOI: 10.1016/s1385-1101(99)00003-9

Links

Tools

Export citation

Search in Google Scholar

Impact of grazing by benthic eukaryotic organisms on the nitrogen sediment–water exchange in the North Sea

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The metabolic inhibitor cycloheximide was used to estimate the influence of primarily unicellular eukaryotes (heterotrophic protozoa) on nutrient recycling in different types of sediments in the North Sea. Fluxes of dissolved inorganic nitrogen across the sediment–water interface were measured in undisturbed sediment cores (controls) and compared to fluxes in sediment cores with cycloheximide added. If eukaryotes play an important role in nutrient recycling, one would expect to find lower nitrogen sediment–water effluxes in cores with cycloheximide due to the inactivation of eukaryotes. This important role hypothesised for eukaryotes was not generally observed: Only at four of the nineteen stations were ammonium effluxes significantly higher in controls than in cores with cycloheximide, and at five stations nitrate effluxes were significantly higher in the controls than in the cores with cycloheximide. Eukaryotic activity apparently contributed to the sediment–water exchange of ammonium through mineralisation of organic matter, nitrification and the subsequent release of ammonium and nitrate at these stations. At most other stations no differences were obtained between controls and cores with cycloheximide. This suggests that bacteria were the most important nutrient mineralisers at these stations at the time of the cruises.