Published in

Taylor and Francis Group, Human Vaccines and Immunotherapeutics, 2(9), p. 242-249, 2013

DOI: 10.4161/hv.22888

Links

Tools

Export citation

Search in Google Scholar

Enhanced potency of replicon vaccine using one vector to simultaneously co-express antigen and interleukin-4 molecular adjuvant. Hum Vaccin Immunother

Journal article published in 2013 by Yao Ma, Yao, Huai-Jie An, Xiao-Qi Wei, Qing Xu, Yun-Zhou Yu, Zhi-Wei Sun
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

We evaluated the utility of interleukin-4 (IL-4) as molecular adjuvant of replicon vaccines for botulinum neurotoxin serotype A (BoNT/A) in mouse model. In both Balb/c and C57/BL6 mice that received the plasmid DNA replicon vaccines derived from Semliki Forest virus (SFV) encoding the Hc gene of BoNT/A (AHc), the immunogenicity was significantly modulated and enhanced by co-delivery or co-express of the IL-4 molecular adjuvant. The enhanced potencies were also produced by co-delivery or co-expression of the IL-4 molecular adjuvant in mice immunized with the recombinant SFV replicon particles (VRP) vaccines. In particular, when AHc and IL-4 were co-expressed within the same replicon vaccine vector using dual-expression or bicistronic IRES, the anti-AHc antibody titers, serum neutralization titers and survival rates of immunized mice after challenged with BoNT/A were significantly increased. These results indicate IL-4 is an effective Th2-type adjuvant for the replicon vaccines in both strain mice, and the co-expression replicon vaccines described here may be an excellent candidate for further vaccine development in other animals or humans. Thus, we described a strategy to design and develop efficient vaccines against BoNT/A or other pathogens using one replicon vector to simultaneously co-express antigen and molecular adjuvant.