Dissemin is shutting down on January 1st, 2025

Published in

BioMed Central, BMC Proceedings, S1(1), 2007

DOI: 10.1186/1753-6561-1-s1-s9

Links

Tools

Export citation

Search in Google Scholar

Genetic association studies for gene expressions: permutation-based mutual information in a comparison with standard ANOVA and as a novel approach for feature selection

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Abstract Mutual information (MI) is a robust nonparametric statistical approach for identifying associations between genotypes and gene expression levels. Using the data of Problem 1 provided for the Genetic Analysis Workshop 15, we first compared a quantitative MI (Tsalenko et al. 2006 J Bioinform Comput Biol 4:259–4) with the standard analysis of variance (ANOVA) and the nonparametric Kruskal-Wallis (KW) test. We then proposed a novel feature selection approach using MI in a classification scenario to address the small n - large p problem and compared it with a feature selection that relies on an asymptotic χ 2 distribution. In both applications, we used a permutation-based approach for evaluating the significance of MI. Substantial discrepancies in significance were observed between MI, ANOVA, and KW that can be explained by different empirical distributions of the data. In contrast to ANOVA and KW, MI detects shifts in location when the data are non-normally distributed, skewed, or contaminated with outliers. ANOVA but not MI is often significant if one genotype with a small frequency had a remarkable difference in the average gene expression level relative to the other two genotypes. MI depends on genotype frequencies and cannot detect these differences. In the classification scenario, we show that our novel approach for feature selection identifies a smaller list of markers with higher accuracy compared to the standard method. In conclusion, permutation-based MI approaches provide reliable and flexible statistical frameworks which seem to be well suited for data that are non-normal, skewed, or have an otherwise peculiar distribution. They merit further methodological investigation.