Dissemin is shutting down on January 1st, 2025

Published in

Elsevier, Pesticide Biochemistry and Physiology, 3(95), p. 166-172, 2009

DOI: 10.1016/j.pestbp.2009.08.011

Links

Tools

Export citation

Search in Google Scholar

Identification of four novel members of Kunitz-like α-amylase inhibitors family from Delonix regia with activity toward Coleopteran insects

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Crop improvement generally focuses on yield, seed quality and nutritional characteristics, rather than resistance to biotic and abiotic stresses. A clear consequence of this approach is the absence of natural anti-feedant toxins in some improved seed materials, allowing predation of commercial crops by insect herbivores. Cowpea (Vigna unguiculata), commonly cultivated by small farmers, is particularly affected by insect-pests that reproduce and develop inside stored seeds. One alternative to conventional pesticides for pest control is the use of biotechnological tools, such as the digestive enzyme inhibitors, that could be introduced in transgenic crops to enhance resistance. In this study, it was verified that the in vivo bioassays using artificial seeds containing 0.5%, 1.0% and 1.5% (w/w) of Delonix regia rich fraction, containing α-amylase inhibitors with effectiveness toward insect α-amylases and other sources, caused remarkable reduction in development and increased mortality of Callosobruchus maculatus cowpea weevil and to cotton boll weevil Anthonomus grandis. Therefore, attempts were made to isolated those inhibitors by SP-Sepharose ion exchange chromatography followed by high performance liquid chromatography on a Vydac C18-TP analytical column. Four inhibitor peaks were obtained with molecular masses of 6.0, 20 and 24 kDa. Their N-termini showed high sequence similarities with Kunitz-like inhibitor family members. These results provide evidence that D. regia synthesizes a multiple family of Kunitz-like α-amylase inhibitors, with different molecular masses and a wide biotechnological potential to control insect-pests.