Dissemin is shutting down on January 1st, 2025

Published in

Oxford University Press (OUP), Brain, 2(131), p. 352-367

DOI: 10.1093/brain/awm335

Links

Tools

Export citation

Search in Google Scholar

OPA1 mutations associated with dominant optic atrophy impair oxidative phosphorylation and mitochondrial fusion

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Dominant optic atrophy (DOA) is characterized by retinal ganglion cell degeneration leading to optic neuropathy. A subset of DOA is caused by mutations in the OPA1 gene, encoding for a dynamin-related GTPase required for mitochondrial fusion. The functional consequences of OPA1 mutations in DOA patients are still poorly understood. This study investigated the effect of five different OPA1 pathogenic mutations on the energetic efficiency and mitochondrial network dynamics of skin fibroblasts from patients. Although DOA fibroblasts maintained their ATP levels and grew in galactose medium, i.e. under forced oxidative metabolism, a significant impairment in mitochondrial ATP synthesis driven by complex I substrates was found. Furthermore, balloon-like structures in the mitochondrial reticulum were observed in galactose medium and mitochondrial fusion was completely inhibited in about 50% of DOA fibroblasts, but not in control cells. Respiratory complex assembly and the expression level of complex I subunits were similar in control and DOA fibroblasts. Co-immunoprecipitation experiments revealed that OPA1 directly interacts with subunits of complexes I, II and III, but not IV and with apoptosis inducing factor. The results disclose a novel link between OPA1, apoptosis inducing factor and the respiratory complexes that may shed some light on the pathogenic mechanism of DOA.