Published in

Elsevier, Journal of Colloid and Interface Science, 1(301), p. 116-122

DOI: 10.1016/j.jcis.2006.04.080

Links

Tools

Export citation

Search in Google Scholar

Synthesis and characterization of ZnS-montmorillonite nanocomposites and their application for degrading eosin B

Journal article published in 2006 by Shiding Miao, Zhimin Liu, Buxing Han, Haowen Yang, Zhenjiang Miao, Zhenyu Sun ORCID
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Nanocomposites of zinc sulfide (ZnS) and montmorillonite (MMT) were prepared via a hydrothermal route. In this method, the MMT treated with hexadecyltrimethyl ammonium bromide (HTAB) aqueous solution was dispersed in the aqueous solution of thiourea and Zn(OOCHCH(3))(2)2H(2)O, and heated at 170 degrees C for about 4 h, resulting in ZnS-MMT composites. The as-prepared nanocomposites were characterized with X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and nitrogen sorption analysis. It was demonstrated that the interlayer space of MMT was enlarged from 0.98 to 3.77 nm after the treatment with HTAB aqueous solution, and the ZnS nanoparticles were deposited on the layers of MMT. Nitrogen sorption analysis demonstrated that the specific surface area of the samples decreased from 39.2 m(2)/g of the pristine MMT to 5.9 m(2)/g of the final ZnS-MMT composites. The resulting ZnS-MMT nanocomposites (50.0 mg) could degrade eosin B completely in aqueous solution (75 ml, 3.2x10(-5) M) within 20 min under UV irradiation.