Published in

15th IFAC Symposium on System Identification, 2009

DOI: 10.3182/20090706-3-fr-2004.00287

Links

Tools

Export citation

Search in Google Scholar

Recursive identification of cornering stiffness parameters for an enhanced single track model

Journal article published in 2009 by Christian Lundquist, Thomas B. Schön ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

The current development of safety systems within the automotive industry heavily relies on the ability to perceive the environment. This is accomplished by using measurements from several different sensors within a sensor fusion framework. One important part of any system of this kind is an accurate model describing the motion of the vehicle. The most commonly used model for the lateral dynamics is the single track model, which includes the so called cornering stiffness parameters. These parameters describe the tire-road contact and are unknown and even time-varying. Hence, in order to fully make use of the single track model, these parameters have to be identified. The aim of this work is to provide a method for recursive identification of the cornering stiffness parameters to be used on-line while driving.