Published in

Optica, Applied optics, 3(41), p. 493, 2002

DOI: 10.1364/ao.41.000493

Links

Tools

Export citation

Search in Google Scholar

Variational Method for the Retrieval of the Optical Thickness and the Backscatter Coefficient from Multiangle Lidar Profiles

This paper was not found in any repository, but could be made available legally by the author.
This paper was not found in any repository, but could be made available legally by the author.

Full text: Unavailable

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

A variational method for retrieving the aerosol optical thickness and backscatter coefficient profiles from multiangle lidar measurements is presented and discussed. A monostatic single-wavelength low-energy lidar system was operated at different zenith angles during the Indian Ocean Experiment (INDOEX) campaign in 1999 to characterize the aerosol plumes in the Indian monsoon. The variational method was applied to lidar data to retrieve profiles of optical thickness and the backscatter coefficient for nighttime and daytime measurements. Results are obtained with an uncertainty of 10% below 3 km (nighttime) and 2.8 km (daytime) and a bias of less than 0.01. During daytime the retrieval of optical parameters is indeed limited to a lower altitude owing to the sky background signal and the atmospheric inhomogeneity. In both cases the total aerosol optical thickness is consistent (+/- 10%) with the integrated value derived from sunphotometer measurements. Backscatter-to-extinction ratios estimated in different regions by two distinct methods compared well, which proves the capability of the method to assess optical measurements and account for the altitude dependence of the phase function.