Published in

Society for Neuroscience, Journal of Neuroscience, 46(24), p. 10384-10392, 2004

DOI: 10.1523/jneurosci.3400-04.2004

Links

Tools

Export citation

Search in Google Scholar

Anosmin-1 modulates fibroblast growth factor receptor 1 signaling in human gonadotropin-releasing hormone olfactory neuroblasts through a heparan sulfate-dependent mechanism

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

Defects of either anosmin-1 or fibroblast growth factor receptor 1 (FGFR1) are known to underlie hereditary Kallmann's syndrome (KS), a human disorder of olfactory and gonadotropin-releasing hormone (GnRH) neuronal ontogeny. Here, we report a functional interaction between anosmin-1 and the FGFR1-FGF2-heparan sulfate complex, leading to amplified responses in the FGFR1 signaling pathway. In human embryonic GnRH olfactory neuroblasts, wild-type anosmin-1, but not proteins with loss-of-function KS mutations, induces neurite outgrowth and cytoskeletal rearrangements through FGFR1-dependent mechanisms involving p42/44 and p38 mitogen-activated protein kinases and Cdc42/Rac1 activation. Furthermore, anosmin-1 enhances FGF2 signaling specifically through FGFR1 IIIc in heterologous BaF3 lymphoid cells in a heparan sulfate-dependent manner. Our study provides compelling evidence for anosmin-1 as an isoform-specific co-ligand modulator of FGFR signaling that amplifies and specifies FGFR1 signaling responses during human nervous system development and defines a mechanism underlying the link between autosomal and X-linked KS.