Published in

Institute of Electrical and Electronics Engineers, IEEE Transactions on Biomedical Engineering, 7(60), p. 1946-1953, 2013

DOI: 10.1109/tbme.2013.2246160

Links

Tools

Export citation

Search in Google Scholar

Multiparameter Respiratory Rate Estimation From the Photoplethysmogram

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

We present a novel method for estimating respiratory rate in real-time from the photoplethysmogram (PPG) obtained from pulse oximetry. Three respiratory induced variations (frequency, intensity, and amplitude) are extracted from the PPG using the Incremental-Merge Segmentation algorithm. Frequency content of each respiratory induced variation is analyzed using Fast Fourier Transforms. The proposed Smart Fusion method then combines the results of the three respiratory induced variations using a transparent mean calculation. It automatically eliminates estimations considered to be unreliable because of detected presence of artifacts in the PPG or disagreement between the different individual respiratory rate estimations. The algorithm has been tested on data obtained from 29 children and 13 adults. Results show that it is important to combine the three respiratory induced variations for robust estimation of respiratory rate. The Smart Fusion showed trends of improved estimation (mean root mean square error 3.0 breaths/min) compared to the individual estimation methods (5.8, 6.2 and 3.9 breaths/min). The Smart Fusion algorithm is being implemented in a mobile phone pulse oximeter device to facilitate the diagnosis of severe childhood pneumonia in remote areas.