Published in

IOP Publishing, Journal of Physics: Condensed Matter, 39(23), p. 394201

DOI: 10.1088/0953-8984/23/39/394201

Links

Tools

Export citation

Search in Google Scholar

On the mechanism of carbon nanotube formation: the role of the catalyst

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Red circle
Preprint: archiving forbidden
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

This work examines the recent developments in non-traditional catalyst-assisted chemical vapour deposition of carbon nanotubes (CNTs) with a view to determining the essential role of the catalyst in nanotube growth. A brief overview of the techniques reliant on the structural reorganization of carbon to form CNTs is provided. Additionally, CNT synthesis methods based upon ceramic, noble metal, and semiconducting nanoparticle catalysts are presented. Experimental evidence is provided for CNT growth using noble metal and semiconducting nanoparticle catalysts. A model for CNT growth consistent with the experimental results is proposed, in which the structural reorganization of carbon to form CNTs is paramount.