Dissemin is shutting down on January 1st, 2025

Published in

Elsevier, Journal of Electro - myography and Kinesiology, 3(23), p. 640-648, 2013

DOI: 10.1016/j.jelekin.2013.01.009

Links

Tools

Export citation

Search in Google Scholar

Age-related changes in neuromuscular function of the quadriceps muscle in physically active adults

Journal article published in 2013 by Anett Mau-Moeller, Martin Behrens, Tobias Lindner ORCID, Rainer Bader, Sven Bruhn
This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Red circle
Postprint: archiving forbidden
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Substantial evidence exists for the age-related decline in maximal strength and strength development. Despite the importance of knee extensor strength for physical function and mobility in the elderly, studies focusing on the underlying neuromuscular mechanisms of the quadriceps muscle weakness are limited. The aim of this study was to investigate the contributions of age-related neural and muscular changes in the quadriceps muscle to decreases in isometric maximal voluntary torque (iMVT) and explosive voluntary strength. The interpolated twitch technique and normalized surface electromyography (EMG) signal during iMVT were analyzed to assess changes in neural drive to the muscles of 15 young and 15 elderly volunteers. The maximal rate of torque development as well as rate of torque development, impulse and neuromuscular activation in the early phase of contraction were determined. Spinal excitability was estimated using the H reflex technique. Changes at the muscle level were evaluated by analyzing the contractile properties and lean mass. The age-related decrease in iMVT was accompanied by a decline in voluntary activation and normalized surface EMG amplitude. Mechanical parameters of explosive voluntary strength were reduced while the corresponding muscle activation remained primarily unchanged. The spinal excitability of the vastus medialis was not different while M wave latency was longer. Contractile properties and lean mass were reduced. In conclusion, the age-related decline in iMVT of the quadriceps muscle might be due to a reduced neural drive and changes in skeletal muscle properties. The decrease in explosive voluntary strength seemed to be more affected by muscular than by neural changes.