American Chemical Society, ACS Applied Materials and Interfaces, 45(7), p. 25014-25023, 2015
Full text: Download
The combination of therapy and diagnosis has been emerging as a promising strategy for cancer treatment. To realize chemotherapy, photothermal therapy, and magnetic resonance imaging (MRI) in one system, we have synthesized a new magnetic nanoparticle (Gd@SiO2-DOX/ICG-PDC) integrating doxorubicin (DOX), indocyanine green (ICG), and gadolinium (III)-chelated silica nanospheres (Gd@SiO2) with a Poly (diallyldimethylammonium chloride) (PDC) coating. PDC coating serves as a polymer layer to protect from quick release of drugs from the nanocarriers and increase cellular uptake. The DOX release from Gd@SiO2-DOX/ICG-PDC depends on pH and temperature. The process will be accelerated in the acidic condition than in a neutral pH 7.4. Meanwhile, upon laser irradiation, the photothermal effects promote DOX release and improve the therapeutic efficacy compared to either DOX-loaded Gd@SiO2 or ICG-loaded Gd@SiO2. Moreover, MRI results show that the Gd@SiO2-PDC nanoparticles are safe T1-type MRI contrast agents for imaging. The Gd@SiO2-PDC nanoparticles loaded with DOX and ICG can thus act as a promising theranostic platform for multimodal cancer treatment.