Published in

European Geosciences Union, Atmospheric Chemistry and Physics, 12(11), p. 5761-5782, 2011

DOI: 10.5194/acp-11-5761-2011

European Geosciences Union, Atmospheric Chemistry and Physics Discussions, 1(11), p. 485-530

DOI: 10.5194/acpd-11-485-2011

Links

Tools

Export citation

Search in Google Scholar

In-cloud oxalate formation in the global troposphere: a 3-D modeling study

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

Abstract. Organic acids attract increasing attention as contributors to atmospheric acidity, secondary organic aerosol mass and aerosol hygroscopicity. Oxalic acid is globally the most abundant dicarboxylic acid, formed via chemical oxidation of gas-phase precursors in the aqueous phase of aerosols and droplets. Its lifecycle and atmospheric global distribution remain highly uncertain and are the focus of this study. The first global spatial and temporal distribution of oxalate, simulated using a state-of-the-art aqueous-phase chemical scheme embedded within the global 3-dimensional chemistry/transport model TM4-ECPL, is here presented. The model accounts for comprehensive gas-phase chemistry and its coupling with major aerosol constituents (including secondary organic aerosol). Model results are consistent with ambient observations of oxalate at rural and remote locations (slope = 1.16 ± 0.14, r2 = 0.36, N = 114) and suggest that aqueous-phase chemistry contributes significantly to the global atmospheric burden of secondary organic aerosol. In TM4-ECPL most oxalate is formed in-cloud and less than 5 % is produced in aerosol water. About 62 % of the oxalate is removed via wet deposition, 30 % by in-cloud reaction with hydroxyl radical, 4 % by in-cloud reaction with nitrate radical and 4 % by dry deposition. The in-cloud global oxalate net chemical production is calculated to be about 21–37 Tg yr−1 with almost 79 % originating from biogenic hydrocarbons, mainly isoprene. This condensed phase net source of oxalate in conjunction with a global mean turnover time against deposition of about 5 days, maintain oxalate's global tropospheric burden of 0.2–0.3 Tg, i.e. 0.05–0.1 Tg-C that is about 5–9 % of model-calculated water soluble organic carbon burden.