Published in

Elsevier, Respiratory Physiology & Neurobiology, 3(174), p. 282-291, 2010

DOI: 10.1016/j.resp.2010.08.013

Links

Tools

Export citation

Search in Google Scholar

Redox signaling and reactive oxygen species in hypoxic pulmonary vasoconstriction

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Hypoxic pulmonary vasoconstriction (HPV) is an essential physiological mechanism of the lung that matches blood perfusion with alveolar ventilation to optimize gas exchange. Perturbations of HPV, as may occur in pneumonia or adult respiratory distress syndrome, can cause life-threatening hypoxemia. Despite intensive research for decades, the molecular mechanisms of HPV have not been fully elucidated. Reactive oxygen species (ROS) and changes in the cellular redox state are proposed to link O2 sensing and pulmonary arterial smooth muscle cell contraction underlying HPV. In this regard, mitochondria and NAD(P)H oxidases are discussed as sources of ROS. However, there is controversy whether ROS levels decrease or increase during hypoxia. With this background we summarize the current knowledge on the role of ROS and redox state in HPV.