Published in

American Society for Microbiology, Applied and Environmental Microbiology, 6(68), p. 2950-2958, 2002

DOI: 10.1128/aem.68.6.2950-2958.2002

Links

Tools

Export citation

Search in Google Scholar

Microtiter Plate Assay for Assessment of Listeria monocytogenes Biofilm Formation

Journal article published in 2002 by D. Djordjevic, Lynne A. McLandsborough, M. Wiedmann ORCID
This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

ABSTRACT Listeria monocytogenes has the ability to form biofilms on food-processing surfaces, potentially leading to food product contamination. The objective of this research was to standardize a polyvinyl chloride (PVC) microtiter plate assay to compare the ability of L. monocytogenes strains to form biofilms. A total of 31 coded L. monocytogenes strains were grown in defined medium (modified Welshimer's broth) at 32°C for 20 and 40 h in PVC microtiter plate wells. Biofilm formation was indirectly assessed by staining with 1% crystal violet and measuring crystal violet absorbance, using destaining solution. Cellular growth rates and final cell densities did not correlate with biofilm formation, indicating that differences in biofilm formation under the same environmental conditions were not due to growth rate differences. The mean biofilm production of lineage I strains was significantly greater than that observed for lineage II and lineage III strains. The results from the standardized microtiter plate biofilm assay were also compared to biofilm formation on PVC and stainless steel as assayed by quantitative epifluorescence microscopy. Results showed similar trends for the microscopic and microtiter plate assays, indicating that the PVC microtiter plate assay can be used as a rapid, simple method to screen for differences in biofilm production between strains or growth conditions prior to performing labor-intensive microscopic analyses.