Published in

American Institute of Physics, Applied Physics Letters, 14(82), p. 2299

DOI: 10.1063/1.1564876

Links

Tools

Export citation

Search in Google Scholar

Time-resolved magnetic domain imaging by x-ray photoemission electron microscopy

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Orange circle
Published version: archiving restricted
Data provided by SHERPA/RoMEO

Abstract

X-ray photoemission electron microscopy (X–PEEM) is a powerful imaging technique that can be used to perform element selective magnetic domain imaging on heterogeneous samples with different magnetic layers, like spin valves and tunnel junctions. We have performed nanosecond time-resolved X–PEEM measurements, on the permalloy layer of a Ni80Fe20 (5 nm)/Cu (10 nm)/Co (5 nm) trilayer deposited on Si(111). We used the pump-probe mode, synchronizing a magnetic pulse from a microcoil with the x-ray photon bunches delivered by the BESSY synchrotron in single bunch mode. Images could be acquired during and after the 20 ns long and 80 Oe high field pulses. The nucleation and subsequent growth of reversed domains in the permalloy could be observed, demonstrating the feasibility of element selective and time-resolved domain imaging using X–PEEM. © 2003 American Institute of Physics.