Published in

American Chemical Society, The Journal of Physical Chemistry A, 32(114), p. 8286-8301, 2010

DOI: 10.1021/jp1047002

Links

Tools

Export citation

Search in Google Scholar

Theoretical Validation of Chemical Kinetic Mechanisms: Combustion of Methanol

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Orange circle
Postprint: archiving restricted
  • Must obtain written permission from Editor
  • Must not violate ACS ethical Guidelines
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

A new technique is proposed that uses theoretical methods to systematically improve the performance of chemical kinetic mechanisms. Using a screening method, the chemical reaction steps that most strongly influence a given kinetic observable are identified. The associated rate coefficients are then improved by high-level quantum chemistry and transition-state-theory calculations, which leads to new values for the coefficients and smaller uncertainty ranges. This updating process is continued as new reactions emerge as the most important steps in the target observable. The screening process employed is a global sensitivity analysis that involves Monte Carlo sampling of the full N-dimensional uncertainty space of rate coefficients, where N is the number of reaction steps. The method is applied to the methanol combustion mechanism of Li et al. (Int. J. Chem. Kinet. 2007, 39, 109.). It was found that the CH(3)OH + HO(2) and CH(3)OH + O(2) reactions were the most important steps in setting the ignition delay time, and the rate coefficients for these reactions were updated. The ignition time is significantly changed for a broad range of high-concentration methanol/oxygen mixtures in the updated mechanism.