Published in

BMJ Publishing Group, BMJ Open, 1(6), p. e009624, 2016

DOI: 10.1136/bmjopen-2015-009624

Links

Tools

Export citation

Search in Google Scholar

Chlamydia trachomatisgenotypes in a cross-sectional study of urogenital samples from remote Northern and Central Australia

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Green circle
Preprint: archiving allowed
Green circle
Postprint: archiving allowed
Green circle
Published version: archiving allowed
Data provided by SHERPA/RoMEO

Abstract

his is an Open Access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/ ; Abstract OBJECTIVES: The objective was to determine the frequency of trachoma genotypes of Chlamydia trachomatis-positive urogenital tract (UGT) specimens from remote areas of the Australian Northern Territory (NT). SETTING: The setting was analysis of remnants of C. trachomatis positive primarily UGT specimens obtained in the course of clinical practice. The specimens were obtained from two pathology service providers. PARTICIPANTS: From 3356 C. trachomatis specimens collected during May 2012-April 2013, 439 were selected for genotyping, with a focus on specimens from postpubescent patients, in remote Aboriginal communities where ocular trachoma is potentially present. PRIMARY AND SECONDARY OUTCOME MEASURES: The primary outcome measure was the proportion of successfully genotyped UGT specimens that were trachoma genotypes. The secondary outcome measures were the distribution of genotypes, and the frequencies of different classes of specimens able to be genotyped. RESULTS: Zero of 217 successfully genotyped UGT specimens yielded trachoma genotypes (95% CI for frequency=0-0.017). For UGT specimens, the genotypes were E (41%), F (22%), D (21%) and K (7%), with J, H and G and mixed genotypes each at 1-4%. Four of the five genotyped eye swabs yielded trachoma genotype Ba, and the other genotype J. Two hundred twenty-two specimens (50.6%) were successfully genotyped. Urine specimens were less likely to be typable than vaginal swabs (p