Published in

American Society of Clinical Oncology, Journal of Clinical Oncology, 24(25), p. 3596-3602, 2007

DOI: 10.1200/jco.2007.11.0908

Links

Tools

Export citation

Search in Google Scholar

Combination of Polymorphisms From Genes Related to Estrogen Metabolism and Risk of Prostate Cancers: The Hidden Face of Estrogens

This paper is made freely available by the publisher.
This paper is made freely available by the publisher.

Full text: Download

Red circle
Preprint: archiving forbidden
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Purpose The association between common functional polymorphisms from the CYP17, CYP19, CYP1B1, and COMT genes involved in the estrogen metabolism and the risk of prostate carcinoma was evaluated. Patients and Methods The study investigated 1,983 white French men (1,101 patients with prostate cancer and 882 healthy controls) aged between 40 and 98 years. The different alleles and genotypes were analyzed according to case-control status, aggressiveness pattern of the tumors, age at onset, and family history of cancers. Results The VV (high activity) genotype of the V432L polymorphism from CYP1B1 (odds ratio [OR] = 1.36; 95% CI, 1.03 to 1.79; P = .031), and the long allele (> 175 bp) of the TTTA repeat from CYP19 (OR, 1.26; 95% CI, 1.08 to 1.47; P = .003) were significantly associated with the risk of prostate cancer. An additive effect was observed when we combined the two at-risk alleles (OR = 1.63; 95% CI, 1.24 to 2.13; P < .001). The association was stronger for the CYP1B1 VV genotype (OR = 1.55; 95% CI, 1.13 to 2.13; P = .007) among the group of patients with highly aggressive disease. Stratification by age at onset showed that the associations of CYP1B1 and CYP19 variants were largely confined to the younger prostate cancer patients. Conclusion This association between polymorphisms from genes related to estrogen metabolism and prostate cancer risk suggest new clinical considerations in the management of prostate cancer: the development of new prevention trials based on genetic profiling and the evaluation of specific inhibitors involving the estrogen pathways.