Published in

Elsevier, Journal of Biomechanics, 2(44), p. 359-364

DOI: 10.1016/j.jbiomech.2010.10.032

Links

Tools

Export citation

Search in Google Scholar

Chemotaxis of mesenchymal stem cells within 3D biomimetic scaffolds-a modeling approach

This paper is available in a repository.
This paper is available in a repository.

Full text: Download

Green circle
Preprint: archiving allowed
Orange circle
Postprint: archiving restricted
Red circle
Published version: archiving forbidden
Data provided by SHERPA/RoMEO

Abstract

Bone tissue engineering is a promising strategy to repair local defects by implanting biodegradable scaffolds which undergo remodeling and are replaced completely by autologous bone tissue. Here, we consider a Keller-Segel model to describe the chemotaxis of bone marrow-derived mesenchymal stem cells (BMSCs) into a mineralized collagen scaffold. Following recent experimental results in bone healing, demonstrating that a sub-population of BMSCs can be guided into 3D scaffolds by gradients of signaling molecules such as SDF-1α, we consider a population of BMSCs on the surface of the pore structure of the scaffold and the chemoattractant SDF-1α within the pores. The resulting model is a coupled bulk/surface model which we reformulate following a diffuse-interface approach in which the geometry is implicitly described using a phase-field function. We explain how to obtain such an implicit representation and present numerical results on μCT-data for real scaffolds, assuming a diffusion of SDF-1α being coupled to diffusion and chemotaxis of the cells towards SDF-1α. We observe a slowing-down of BMSC ingrowth after the scaffold becomes saturated with SDF-1α, suggesting that a slow release of SDF-1α avoiding an early saturation is required to enable a complete colonization of the scaffold. The validation of our results is possible via SDF-1α release from injectable carrier materials, and an adaptation of our model to similar coupled bulk/surface problems such as remodeling processes seems attractive.